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Abstract 
 

Ulos cloth is a traditional woven fabric of the Batak tribe in North Sumatra, valued for its aesthetic and symbolic significance in various 

ceremonies. The diversity of ulos motifs presents challenges in preservation due to their unique patterns and functions. This study aims to 

develop an accurate method for classifying ulos motifs using Transfer Learning on Convolutional Neural Network (CNN) architectures. 

Five popular models—VGG16, VGG19, MobileNetV3, Inception-V3, and EfficientNetV2—were evaluated on a dataset of 962 ulos 

images across six motif categories.The results show that Inception-V3 outperformed other models with an average validation accuracy of 

98.13% and the lowest loss of 5.67%. Inception-V3 also demonstrated superior generalization, achieving the highest K-fold validation 

accuracy, while VGG16 and VGG19 exhibited overfitting at higher learning rates. Two-way ANOVA analysis confirmed significant 

performance differences among the models and highlighted the interaction between model type and training methods. This research 

recommends Inception-V3 as the optimal model for ulos motif classification, offering an efficient and reliable tool to support cultural 

preservation through advanced image recognition technology. 
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1. Introduction 

Indonesia is renowned for its extraordinary cultural richness, one of which is the variety of traditional textiles that serve as a legacy of art 

and ancestral heritage. Traditional fabrics such as Ulos, Batik, Ikat, and Songket are not only valued for their aesthetic appeal but also hold 

philosophical and symbolic meanings that reflect the identity and local wisdom of the communities that create them [1]. Ulos, a traditional 

woven fabric of the Batak people from North Sumatra, is one such example. It is used not only as clothing but also as a symbol of blessing, 

affection, and unity in traditional ceremonies [2]. In 2025, Ulos is being proposed by the North Sumatra Provincial Government to 

UNESCO as an intangible cultural heritage of the world [3]. 

Ulos carries sacred and mystical values that play a crucial role in the lives of the Batak community. The diversity of Ulos types enriches 

its cultural heritage, with each type serving unique functions in various traditional rituals and everyday use. However, certain types of Ulos, 

such as Ulos Raja, Ulos Ragi Botik, Ulos Gobar, Ulos Saput, and Ulos Sibolang, are now rarely produced and are at risk of extinction [4]. 

This situation underscores the urgency of identifying and preserving Ulos to ensure that knowledge about the remaining types is 

documented and appreciated before it is completely lost. A major challenge in recognizing Ulos types lies in the differences in motifs, 

which are often difficult to distinguish visually. Identifying Ulos types typically requires assistance from weavers or community elders. 

While culturally valuable, this process is time-consuming and prone to errors [5]. To address these challenges, Artificial Intelligence (AI) 

technology, particularly machine learning, can be applied to automate the process of Ulos motif classification [6], [7]. Algorithms such as 

Convolutional Neural Networks (CNNs) have shown potential in enhancing accuracy in classification tasks [8], [9], making them a relevant 

tool for recognizing traditional textile motifs. 

Previous studies on fabric motif classification using CNNs demonstrated potential in identifying traditional textiles; however, model 

accuracy varies widely. CNN models trained from scratch tend to produce varied accuracy levels, ranging from 64.45% at the lowest to 

87.27% at the highest [10]. Transfer Learning, which leverages pre-trained models, has demonstrated higher accuracy in several previous 

studies, such as in the classification of woven fabric patterns and X-ray images [11], [12]. Models like VGG, Inception-V3, MobileNet, 

and ResNet have proven effective in improving image recognition accuracy due to Transfer Learning [13], [14]. 
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This study focuses on six types of Ulos: Ulos Bintang Maratur, Ulos Mangiring, Ulos Ragi Hotang, Ulos Ragi Hidup, Ulos Sadum, and 

Ulos Sibolang, chosen for their diverse motifs and cultural significance. By testing the capabilities of CNN and Transfer Learning methods 

on a dataset of images from these six types of Ulos, the study aims to compare various model architectures to determine the most effective 

method for classifying Ulos motifs. This research falls under the quantitative category, utilizing image data processed into numerical 

matrices derived from Ulos image extraction. It is also comparative, aiming to evaluate the effectiveness of five Transfer Learning 

architectures within Convolutional Neural Networks (CNNs), namely VGG16, VGG19, MobileNetV3, Inception-V3, and EfficientNetV2.  

2. Research Method 

This study comprises seven processes (as illustrated in Figure 1): 

  
Fig. 1: Research workflow 

2.1. Data Collection 

The initial stage of this research focused on collecting data consisting of various images of Ulos fabric motifs. This data served as training 

data for the model. The data was collected through the Roboflow website, with a total of 962 Ulos images divided into six motif categories: 

Bintang Maratur, Mangiring, Ragihotang, Ragihidup, Sadum, and Sibolang. The data was accessed on January 24, 2024, from a public 

source on Roboflow (https://universe.roboflow.com/usu-ukmth/ulos/dataset/4). During the data collection process, image quality was 

examined to ensure that only complete and representative images were used. A total of 56 cropped or low-quality images were removed, 

leaving 906 images in the dataset. This removal ensured a balanced number of images in each Ulos motif category, with 151 images per 

category, as shown in Table 1. 

Table 1: Comparison of total data classes 

Ulos Before Deletion After Deletion 

Bintangmaratur 175 151 

Mangiring 170 151 

Ragi Hidup 159 151 

Ragi Hotang 155 151 

Sadum 152 151 
Sibolang 151 151 

2.2. Data Preprocessing 

After preparing the dataset, the data preprocessing stage began to minimize potential errors in the images. This stage involved verifying 

the correctness of the images with their designated folders and labeling each piece of data, which is a crucial part of the process. These 

labels were used to identify classes in the classification task. Additionally, at this stage, the collected images were resized for consistency, 

ensuring uniform dimensions for each data point. Data augmentation was also performed on the training images to enhance model 

performance and prevent overfitting.   

 
Fig. 2: Results of image augmentation 
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2.3. Split Dataset 

This stage involved splitting the dataset into two parts with an 80:20 ratio, where 80% of the total data was used for training and 20% for 

testing. This division means that out of the total 906 samples, 756 samples were used as training data, and 150 samples were used as testing 

data. Previous studies have shown that an 80:20 split ratio yields better accuracy results compared to other ratios such as 70:30, 60:40, and 

50:50 [15]. This division is expected to improve the model's effectiveness in learning data patterns and measuring performance more 

accurately.  

2.4. Model CNN 

In this stage, a CNN model was constructed by adding a fully connected layer to the pre-defined Transfer Learning models. The 

hyperparameters used to build the CNN model are outlined in Table 2. 

Table 2: Hyperparameters of the CNN Model 

Hyperparameter Nilai 

Optimization Adam 

Learning Rate 1 × 10−3 | 1 × 10−4 

Epoch 50 

Batch 32 

The optimization algorithm used was Adaptive Momentum Optimization (Adam), selected based on previous studies showing that Adam 

achieved the highest validation accuracy and the lowest loss compared to other optimizers such as Rprop, Adagrad, Adamax, and Nadam, 

with a learning rate of 1 × 10−3 [16]. To examine the effect of learning rates, experiments were also conducted using a learning rate of 

1 × 10−4. The CNN model was trained on the preprocessed data using a batch size of 32 and 50 epochs, in line with previous studies 

indicating that this batch size yielded the highest accuracy compared to other batch sizes [17]. The Transfer Learning models utilized 

included architectures such as VGG16, VGG19, MobileNetV3, Inception-V3, and EfficientNetV2. These architectures comprised two 

components: feature learning and classification. The feature learning stage leveraged convolutional layers to recognize patterns, while the 

classification stage used these patterns to predict classes. 

2.5. Model Evaluation 

The model evaluation stage involved calculating metrics such as confusion matrix, recall, precision, F1 score, and accuracy to 

comprehensively assess performance. By monitoring the number of true positives, true negatives, false positives, and false negatives, these 

metrics were computed using Equations 1 through 4 [18]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∙
1

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

                    (4) 

2.6. K-fold Cross Validation 

K-fold Cross Validation is a model validation technique used to measure model performance more accurately. In this method, the dataset 

is divided into k parts (folds), and the model is trained k times, each time using one fold as validation data while the rest are used for 

training. The results of each fold are then averaged to obtain the final accuracy and loss values. Figure 3 illustrates the data partitioning 

process, providing a detailed explanation of the folds used for training and validation. 

 
Fig. 3: Dataset split using 5-fold cross-validation 
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2.7. Two-Way Anova 

ANOVA (Analysis of Variance) is a statistical method used to determine whether there are significant differences among the means of two 

or more groups. In this case, the researchers employed two-way ANOVA to evaluate the effects of two independent factors (Model and 

Method) as well as their interaction on the dependent variable, accuracy. Two-way ANOVA enables the analysis not only of the main 

effects of each factor but also of how these factors interact with one another. 

3. Experiments and Analysis 

3.1. Experimental setup 

This study was conducted using Google Colab, a cloud-based platform that provides a Python programming environment with access to 

hardware like GPUs and TPUs. The experiments were carried out using Google Colab’s TPUv2 (Tensor Processing Unit), a specialized 

hardware designed to accelerate machine learning computations, particularly in deep learning. TPUv2 offers high computational power, 

enabling more efficient model training compared to conventional CPUs or GPUs. The use of TPUv2 allowed the researchers to perform 

computations with greater resources without depending on local hardware specifications. 

3.2. Experimental results and analysis 

To evaluate the performance of each model, precision, recall, F1-score, and accuracy metrics were calculated, as presented in Table 3. 

Table 3: Validation results of each model 

Model Learning Rate Data Class Precision Recall F1 score Accuracy (%) 

VGG16 

1x10−3 

Bintangmaratur 0.96 1 0.98 

99 

Mangiring 1 0.96 0.98 

Ragihidup 1 1 1 

Ragihotang 1 1 1 

Sedum 1 1 1 

Sibolang 1 1 1 

1x10−4 

Bintangmaratur 0.66 1 0.79 

84 

Mangiring 0.89 0.96 0.92 

Ragihidup 0.90 0.72 0.80 

Ragihotang 0.85 0.68 0.76 

Sedum 0.95 0.72 0.82 

Sibolang 0.92 0.96 0.94 

VGG19 

1x10−3 

Bintangmaratur 1 1 1 

99 

Mangiring 1 1 1 

Ragihidup 0.96 1 0.98 

Ragihotang 1 0.96 0.98 
Sedum 1 1 1 

Sibolang 1 1 1 

1x10−4 

Bintangmaratur 0.86 1 0.93 

91 

Mangiring 1 0.96 0.98 

Ragihidup 0.80 0.80 0.80 
Ragihotang 0.89 0.96 0.92 

Sedum 1 0.84 0.91 

Sibolang 0.92 0.88 0.90 

MobileNet V3 Large 

1x10−3 

Bintangmaratur 0.70 0.92 0.79 

61 

Mangiring 0.55 0.72 0.62 
Ragihidup 1 0.44 0.61 

Ragihotang 0.58 0.44 0.50 

Sedum 0.38 0.60 0.46 

Sibolang 1 0.56 0.72 

1x10−4 

Bintangmaratur 0.58 0.44 0.50 

49 

Mangiring 0.32 0.80 0.46 

Ragihidup 1 0.12 0.21 

Ragihotang 0.41 0.48 0.44 

Sedum 0.73 0.44 0.55 

Sibolang 0.73 0.64 0.68 

Inception-V3 

1x10−3 

Bintangmaratur 1 1 1 

99 

Mangiring 0.93 1 0.96 

Ragihidup 1 1 1 

Ragihotang 1 0.92 0.96 

Sedum 1 1 1 
Sibolang 1 1 1 

1x10−4 

Bintangmaratur 1 1 1 

99 

Mangiring 0.93 1 0.96 

Ragihidup 1 1 1 

Ragihotang 1 0.92 0.96 
Sedum 1 1 1 

Sibolang 1 1 1 

Efficient NetV2B1 1x10−3 

Bintangmaratur 0 0 0 

17 Mangiring 0 0 0 

Ragihidup 0 0 0 
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Ragihotang 0 0 0 

Sedum 0 0 0 

Sibolang 0.17 1 0.29 

1x10−4 

Bintangmaratur 0.23 0.76 0.36 

29 

Mangiring 0 0 0 

Ragihidup 0 0 0 

Ragihotang 0 0 0 

Sedum 0 0 0 

Sibolang 0.37 1 0.54 

Table 3 presents the performance metrics of various Transfer Learning (TL) models in identifying different types of Ulos patterns in the 

testing dataset. The testing accuracy demonstrates how effectively the deep learning models perform classification. Based on Table 3, 

VGG16 achieved the highest accuracy of 99% with a learning rate of 1 × 10−3, along with almost perfect precision, recall, and F1-score 

values for all data classes. However, with a learning rate of 1 × 10−4, VGG16's performance declined, showing an accuracy of 84% with 

varied metrics across different classes. VGG19 exhibited excellent performance with an accuracy of 99% at a learning rate of 1 × 10−4, 

maintaining high precision, recall, and F1-score values for all classes. At a learning rate of 1 × 10−4, VGG19 still performed well with an 

accuracy of 91%, though some classes experienced a drop in precision and recall. MobileNetV3Large showed lower performance with a 

61% accuracy at a learning rate of 1 × 10−3, and its precision and recall varied significantly across classes. Its performance further declined 

with a 49% accuracy at a learning rate of 1 × 10−4, and lower metrics for most classes. InceptionV3 maintained consistent performance, 

achieving 99% accuracy at both learning rates, with high precision, recall, and F1-score values for all classes. EfficientNetV2B1 

demonstrated the lowest results, with accuracies of 17% at a learning rate of 1 × 10−3 and 29% at 1 × 10−4, alongside very low precision 

and recall values except for slight improvements in the Sibolang class. 

 
Fig. 4: Confusion matrix learning rate 1 × 10−3 

Figure 4 illustrates the confusion matrix for the testing dataset, offering an intuitive representation of the classification performance of each 

TL model. The analysis of results for a learning rate of (1 × 10−3)   reveals significant differences in the tested models' performance. 

VGG16 and VGG19 showed excellent results, achieving near-perfect accuracy in classifying each class. VGG16 had minimal errors, except 

for the "Mangiring" class, where one instance was misclassified as "Bintangmaratur." VGG19 also showed high accuracy, with a single 

error in the "Ragihotang" class, which was incorrectly classified as "Ragihidup." Conversely, MobileNetV3 demonstrated varied 

performance; while it classified the "Bintangmaratur" and "Sibolang" classes well, it struggled to accurately classify other classes. The 

"Mangiring" and "Sadum" classes had numerous misclassifications, while the "Ragihotang" class had predictions scattered across other 
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classes, including "Ragihidup," "Sadum," and "Sibolang." InceptionV3, similar to VGG16 and VGG19, exhibited excellent performance 

with only one error in the "Ragihotang" class, which was classified as "Ragihidup." On the other hand, EfficientNetV2 showed the poorest 

performance, failing to effectively distinguish between other classes and assigning most instances to a single class.  

 
Fig. 5: Confusion matrix learning rate 1 × 10−4 

Figure 5 presents the confusion matrix for the testing dataset with a learning rate of (1 × 10−4), highlighting performance variations among 

the models. VGG16 delivered excellent results with only a few classification errors, notably in the "Ragihidup" class, where seven instances 

were classified as "Ragihotang" and one as "Sadum," while other classes were classified correctly or with minimal errors. VGG19 also 

performed well, although there were some misclassifications in the "Ragihidup" and "Sadum" classes, with three instances of "Ragihidup" 

being classified as "Ragihotang" and one as "Mangiring." InceptionV3 achieved near-perfect classification, with only two errors in the 

"Ragihotang" class being classified as "Ragihidup," making it one of the most accurate models tested. Conversely, MobileNetV3 showed 

more varied results, with classification errors spread across different classes, particularly in the "Bintangmaratur" and "Mangiring" classes, 

where instances were misclassified into other classes such as "Sibolang" and "Ragihotang," leading to less consistent performance than 

other models. EfficientNetV2, despite showing slight improvement compared to its earlier results, continued to perform poorly, with 

significant misclassifications in the "Ragihotang" and "Sadum" classes, where several instances were classified as "Sibolang," and it failed 

to match the performance of models like VGG16, VGG19, and InceptionV3.  
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Fig. 6: Accuracy and Loss Graph with a learning rate of 1 × 10−3 

Figure 6 presents the accuracy and loss curves per epoch for various deep learning models (VGG16, VGG19, MobileNetV3, InceptionV3, 

and EfficientNetV2) with a learning rate of 1 × 10−3 over 50 epochs, providing an overview of each model's performance. The curve for 

VGG16 shows an increase in accuracy approaching near-optimal levels, with training and validation accuracy reaching approximately 

99%. The loss decreases effectively, but the validation accuracy curve displays fluctuations, with accuracy rising and falling throughout 

the epochs. This indicates that while the model approaches overfitting, the fluctuations in validation accuracy suggest potential instability 

in performance on unseen data. VGG19 also exhibits an increase in accuracy approaching near-optimal levels, slightly outperforming 

VGG16, though there is a small gap between training and validation accuracy, where validation accuracy is slightly higher. Validation 

accuracy reaches approximately 99%, with minor fluctuations indicating mild overfitting, albeit still controlled. In contrast, MobileNetV3 

displays greater fluctuations in accuracy; while training accuracy remains stable but lower, validation accuracy is highly volatile. The loss 

curve for MobileNetV3 shows a general decline but also fluctuates, indicating challenges in consistent learning.  InceptionV3 demonstrates 

excellent performance, with training and validation accuracy rapidly achieving high values near 1.0 (100%) and a steady, rapid decline in 

loss. However, the validation accuracy curve for InceptionV3 also shows some fluctuations, similar to VGG16, indicating potential 

instability in generalization, even though the model achieves very high accuracy. EfficientNetV2, on the other hand, exhibits very low 

accuracy and shows no significant improvement over the 50 epochs. The loss curve indicates a rapid initial decrease but remains high 

afterward, reflecting the model's difficulty in achieving good generalization at this learning rate. 
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Fig. 7: Accuracy and Loss Graph with a learning rate of 1 × 10−4 

Figure 7 depicts the accuracy and loss curves per epoch for several deep learning models (VGG16, VGG19, MobileNetV3, InceptionV3, 

and EfficientNetV2) using a learning rate of 1 × 10−4 over 50 epochs, providing insights into the models' performance across epochs. 

VGG16 shows a steady increase in accuracy, with validation accuracy reaching approximately 84%, accompanied by a stable decline in 

loss without signs of overfitting, indicating good generalization performance. VGG19 also demonstrates a solid increase in accuracy, 

nearing 90%, with validation accuracy slightly lower than training accuracy and a stable loss decline, though exhibiting minor overfitting. 

MobileNetV3 experiences significant fluctuations in accuracy, especially in validation, with its loss curve also displaying volatility, 

indicating challenges in convergence at this learning rate. InceptionV3 demonstrates excellent performance, with accuracy rapidly reaching 

high values between 90% and 98% and a steady, rapid decline in loss, indicating good generalization. EfficientNetV2, while showing 

improvement compared to a learning rate of 1 × 10−3, still exhibits low and fluctuating accuracy and limited loss reduction, reflecting 

difficulties in achieving optimal learning at this rate.  

To determine whether 1 × 10−3 or 1 × 10−4 is a better learning rate, an analysis of the accuracy and loss graphs reveals significant 

differences. For VGG16 and VGG19, 1 × 10−3 results in a rapid accuracy increase but with some fluctuations, where accuracy rises and 

falls throughout the epochs. This indicates that, while the models approach overfitting, the fluctuations in validation accuracy suggest 

potential instability in performance on unseen data. Conversely, 1 × 10−4 provides steady accuracy improvements, albeit slightly slower, 

with greater stability. For VGG19, validation loss is slightly higher than training loss, suggesting mild overfitting but within acceptable 

limits. MobileNetV3 with 1 × 10−3 shows highly fluctuating accuracy in both training and validation, indicating that the learning rate 

might be too high. With 1 × 10−4, while fluctuations persist, the model exhibits slightly better stability, although accuracy remains low, 

indicating the need for further optimization. InceptionV3 with 1 × 10−3 achieves high accuracy quickly but also shows significant 

fluctuations, suggesting that 1 × 10−3 might be too high. In contrast, 1 × 10−4 delivers more stable performance with consistent accuracy 

improvements, indicating smoother and more reliable learning. EfficientNetV2 performs poorly with 1 × 10−3, showing very low accuracy 

and unstable loss. While 1 × 10−4 results in slight improvements, performance remains low, suggesting the need for additional 

optimization. Overall, 1 × 10−4 appears to be the better learning rate for most models, offering greater stability and more consistent 

performance, except for VGG19, where 1 × 10−3 provides more stable and effective results. 

3.3.1. Computational time 

In this experiment, Google Colaboratory with TPUv2 was used, and the average training time per epoch and the total training time for 

various models and learning rates showed significant variation. MobileNetV3Large had the shortest training time per epoch, approximately 

13.72 seconds for 1 × 10−3 and 13.62 seconds for 1 × 10−4, with a total training time of 11 minutes and 24 seconds for both learning 

rates. InceptionV3 and EfficientNetV2B1 demonstrated relatively consistent training times, approximately 14.6 seconds per epoch for 

1 × 10−4 and 15.22 seconds per epoch, respectively, with total training times of about 12 minutes and 13 seconds and 12 minutes and 44 
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seconds. VGG16 and VGG19 had longer training times per epoch, around 25 seconds (VGG16) and 24 seconds (VGG19) for the learning 

rate 1 × 10−4, with total training times of approximately 21 minutes and 46 seconds and 20 minutes and 39 seconds, respectively. 

Table 4: Training time results for each model 

Model Learning rate Training time per Epoch (AVG) Training time (Total) 

VGG16 
1x10−3 24.58 seconds 20 minutes 40 seconds 

1x10−4 25.76 seconds 21 minutes 46 seconds 

VGG19 
1x10−3 23.8 seconds 19 minutes 43 seconds 

1x10−4 24.9 seconds 20 minutes 39 seconds 

MobileNetV3Large 
1x10−3 13.72 seconds 11 minutes 24 seconds 

1x10−4 13.62 seconds 11 minutes 24 seconds 

InceptionV3 
1x10−3 14.82 seconds 12 minutes 15 seconds 

1x10−4 14.6 seconds 12 minutes 13 seconds 

EfficientNetV2B1 
1x10−3 15.22 seconds 12 minutes 45 seconds 

1x10−4 15.22 seconds 12 minutes 44 seconds 

3.3.2. Testing Models 

  
Fig. 8: Testing for each model 

After completing the training process, the researcher conducted testing to evaluate the models' performance in image classification. The 

testing was carried out using two types of data: Bintang Maratur data and new data consisting of batik images that were never involved in 

the training process. In the tests using Bintang Maratur data, the VGG16, VGG19, and Inception-V3 models successfully predicted the 

images correctly, demonstrating strong capabilities in recognizing the motif patterns previously trained. However, the MobileNetV3 and 

EfficientNetV2B1 models failed to predict the Bintang Maratur data accurately, indicating limitations in recognizing more complex 

patterns. Meanwhile, tests with new data consisting of batik images revealed that all models, including VGG16, VGG19, MobileNetV3, 

Inception-V3, and EfficientNetV2B1, correctly predicted that the data was different from the ulos motif categories they were trained on. 

These results indicate that while some models showed weaknesses in recognizing training data, all models demonstrated good 

generalization capabilities in distinguishing significantly different visual patterns. 

3.4. K-fold cross validation 

The K-fold Cross Validation test, using 5-fold, was conducted to evaluate the performance of several Transfer Learning models, including 

VGG16, VGG19, MobileNetV3 Large, InceptionV3, and EfficientNetV2B1. This evaluation included accuracy and loss for each fold, as 

well as the average values across all folds. The researcher used a learning rate that was deemed more effective overall, providing greater 

stability and consistent performance for most models, except for VGG19, where the learning rate yielded more stable and effective results.   

Table 5: Results of 5-fold cross-validation for each model 

Model 
K-fold Cross Validation 

Mean (%) 
1 2 3 4 5 

VGG16 
Accuracy 0.826 0.833 0.839 0.806 0.860 83.33 

Loss 0.655 0.658 0.609 0.665 0.601 63.80 

VGG19 
Accuracy 0.893 0.866 0.833 0.899 0.853 86.93 

Loss 0.530 0.596 0.602 0.530 0.578 57.53 

MobileNet V3Large Accuracy 0.5 0.466 0.373 0.386 0.433 43.20 
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Loss 1.663 1.651 1.643 1.659 1.643 165.23 

InceptionV3 
Accuracy 0.980 0.980 1 0.973 0.973 98.13 

Loss 0.059 0.055 0.049 0.056 0.061 5.67 

Efficient NetV2B1 
Accuracy 0.293 0.366 0.273 0.266 0.193 27.87 

Loss 1.775 1.771 1.775 1.774 1.774 177.42 

 

VGG19 demonstrated slightly better performance than VGG16, with an average accuracy of 86.93%. The highest accuracy of 89.9% was 

recorded in fold 4, while the lowest accuracy of 83.3% occurred in fold 3. The average loss was 57.53%, with the lowest loss of 53.0% 

recorded in folds 1 and 4, indicating good generalization capability on this dataset. MobileNetV3 Large showed unsatisfactory performance 

with an average accuracy of 43.20%. The highest accuracy was 50.0% in fold 1, while the lowest accuracy was only 37.3% in fold 3. The 

high average loss of 165.23% indicates a significant prediction error rate. InceptionV3 achieved the best performance among all models, 

with an average accuracy of 98.13%. Perfect accuracy was achieved in fold 3 at 100%, and the lowest accuracy remained high at 97.3% in 

folds 4 and 5. It’s very low average loss of 5.67% underscores its excellent predictive ability with minimal error. EfficientNetV2B1 

demonstrated the poorest performance, with an average accuracy of only 27.87%. The highest accuracy was 36.6% in fold 2, and the lowest 

accuracy was just 19.3% in fold 5. The average loss of 177.42% reflects extremely high prediction error, consistent with its low accuracy. 

Overall, the results of the K-fold Cross Validation highlight that InceptionV3 is the best model for ulos classification, followed by VGG19 

and VGG16. In contrast, MobileNetV3 Large and EfficientNetV2B1 showed inadequate performance for this task, with low accuracy and 

high loss values. 

3.5. Uji Anova 

Table 6: Two-way ANOVA test results 

 Sum_sq df F 
PR(>F) 

(p-value) 

C(Model) 2.703517 4.0 424.942374 4.924638e-19 

C(Method) 0.022490 2.0 7.070149 4.760219e-03 

C(Model):C(Method) 0.051678 8.0 4.061405 5.186686e-03 

Residual 0.031810 20.0 - - 

Table 6 shows that the F-statistic value for the Model factor is 424.94 with a p-value of 4.924638e-19, which is much smaller than the 

significance level of 0.05. This indicates that the differences between the models in this study significantly affect accuracy, confirming that 

different models yield significantly different accuracies. For the Method factor, the F-statistic value is 7.07 with a p-value of 0.0048, which 

is also smaller than 0.05, indicating that the differences in the methods applied have a significant impact on accuracy and that the method 

used significantly influences accuracy. Additionally, the F-statistic value for the interaction between Model and Method is 4.06 with a p-

value of 0.0052, indicating a significant interaction between these two factors in influencing accuracy, with the model's effect varying 

depending on the method applied, thus rejecting the null hypothesis regarding the interaction. The residual variation in this ANOVA model 

is 0.031810 with 20 degrees of freedom, reflecting the variability that cannot be explained by the tested factors, and it has no p-value as it 

represents unexplained variation by those factors. Based on the results of the two-way ANOVA, the factors of Model, Method, and their 

interaction significantly influence accuracy. These findings suggest that the differences in model and method, as well as how they interact, 

significantly impact accuracy. 

4. Conclusion  

This study successfully demonstrated the application of Transfer Learning in classifying six traditional *ulos* fabric patterns using CNN 

architecture. Among the evaluated models—VGG16, VGG19, MobileNetV3, Inception-V3, and EfficientNetV2B1—the Inception-V3 

model showed the best performance. This model achieved the highest validation accuracy of 98.13% with the lowest loss of 5.67%, while 

maintaining consistent results in K-fold validation. This indicates an exceptional generalization ability in the classification task. The 

analysis also revealed significant differences in model performance, as shown by the two-way ANOVA, particularly regarding the impact 

of model architecture and training configuration. Although VGG16 and VGG19 achieved near-perfect results at certain learning rates, their 

performance tended to vary significantly when the learning rate was changed, indicating potential overfitting under suboptimal conditions. 

MobileNetV3 and EfficientNetV2B1, while showing lower initial performance, demonstrated potential for improvement with advanced 

configurations or fine-tuning strategies. 
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