Improvement of Fashion Product Sales Association Model in the Largest Store on Melgit Official Lazada with the Frequent Pattern Growth Algorithm
DOI:
https://doi.org/10.59934/jaiea.v4i2.926Keywords:
FP-Growth, association, support, fashion products, Meglit Official Lazada.Abstract
In this digital era, it is increasingly easier for people to shop. E-commerce or Marketplace is a communication technology in the scope of business that seeks to maximize information from large transaction data to create relevant product recommendation models. The Melgit Official store on Lazada is one of the stores with the most sales of fashion products. To understand consumer buying patterns and improve sales strategies, data analysis is needed that can uncover associations between products that are frequently purchased together. One of the algorithms that can be used to find this association pattern is FP-Growth (Frequent Pattern Growth). The FP-Growth algorithm is effective in finding itemsets that frequently appear on purchase transactions to support business decision-making. which was chosen because of its efficiency in finding high-frequency patterns from large datasets without the need to perform repeated scans. By using the FP-Growth method, it is hoped that product purchase patterns can be found and can help in compiling product recommendations that are more in line with consumer preferences, as well as assisting stores in determining more effective sales strategies. This research was conducted with the aim of identifying the associations that sell the most fashion products in the Melgit Official store on the Lazada platform. This research method uses the FP-Growth approach, where the analyzed sales data results in product associations with certain support and confidence values. Support is measured as the proportion of total transactions that contain a particular item, while confidence indicates how often an item appears along with other items in a transaction. The results showed that the best support value in the FP-Growth algorithm was 0.1, which means that related products appeared in 10% of transactions. In addition, the confidence value obtained in the create association rules was 0.3, indicating that the association between the products in the formed rules was very strong and often occurred at the same time as the most product sales patterns, namely army rayon shirts and black rayon shirts. When buying an army rayon shirt, the probability of buying a black rayon shirt is 100%. From these results, it can be concluded that the FP-Growth algorithm provides significant results in determining the association pattern in fashion product sales data. This research is expected to help Melgit Official stores improve sales efficiency and customer satisfaction at Melgit Official stores, as well as contribute to the development of fashion product marketing strategies on e-commerce platforms.
Downloads
References
Noviyanti, A. E., & Juanita, S. (2024). Rekomendasi Paket Pakaian Berdasarkan Pola Penjualan Menggunakan Algoritma Apriori. JURNAL SISFOTENIKA, 14(2), 129–139.
Santoso, M. H. (2021). Application of Association Rule Method Using Apriori Algorithm to Find Sales Patterns Case Study of Indomaret Tanjung Anom. Brilliance: Research of Artificial Intelligence, 1(2), 54–66.
Gunadi, W. (2020). Prospek Dan Strategi Bersaing Pada Industri Fesyen. Jurnal Ilmiah M-Progress, 10(1), 45–56.
Achmad, F., Nurdiawan, O., & Wijaya, Y. A. (2023). Analisa Pola Transaksi Pembelian Konsumen Pada Toko Ritel Kesehatan Menggunakan Algoritma Fp-Growth. Jurnal Mahasiswa Teknik Informatika, 7(1), 168–175.
Andini, E., & Martanto. (2024). Analisis Asosiasi Fp-Growth Untuk Meningkatkan Efisiensi Pemilihan Produk Frozen Food Di Toko Aneka Frozen Food Josef Family. Jurnal Mahasiswa Teknik Informatika, 8(2), 1985–1991.
Anwar, B., Ambiyar, A., & Fadhilah, F. (2023). Application of the FP-Growth Method to Determine Drug Sales Patterns. Jurnal Sinkron, 8(1), 405–414.
Arisandi, F., Kristanto, & Juliane, C. (2023). Identifikasi Strategi Penjualan Dengan Pendekatan Asosiasi FP-Growth Pada Perusahaan Ritel Berkah. Jurnal Teknik Informatika Dan Sistem Informasi , 10(1), 421–431.
Aviqah, R., Muhammad, A., & Mandala, E. P. W. (2024). Penerapan Metode FP-Growth Dalam Optimalisasi Bisnis Retail. Jurnal CoSciTech (Computer Science and Information Technology), 4(3), 821–831.
Destiawati, D., Rahaningsih, N., Bahtiar, A., Ali, I., & Nuris, N. D. (2024). Analisis Pola Penjualan Menggunakan Algoritma Asosiasi Fp-Growth Di Pt Abc. Jurnal Mahasiswa Teknik Informatika, 8(3), 3405–3410.
Fauzi, R., Aranski, A. W., Nopriadi, N., & Hutabri, E. (2023). Implementasi Data Mining Pada Penjualan Pakaian dengan Algoritma FP-Growth. JURIKOM (Jurnal Riset Komputer), 10(2), 436–445.
Indah, & Ali, I. (2024). Penerapan Algoritma Fp Growth Untuk Mendukung Pola Pembelian Sembako Di Toko Uci. Jurnal Mahasiswa Teknik Informatika, 8(2), 1643–1650.
Indahsari, D., Christie, V. N., & Maulana, iqbal. (2021). Computer Based Information System Journal Penerapan Metode Asosiasi Dengan Algoritma FP-Growth Pada Data Transaksi PT John Tampi Group. Penerapan Metode Asosiasi Dengan Algoritma FP-Growth Pada Data Transaksi PT John Tampi Group, 4(2), 1–9.
Mardedi, L. Z. A., Syahrir, M., & Kartarina. (2024). Analisis Perbandingan Algortitma Fp-Growth dan Tpq-Apriori Dalam Menentukkan Rule Based Terbaik Untuk Sistem Rekomendasi Produk. Jurnal EXPLORE, 14(2), 55–66.
Nasyuha, A. H., Jama, J., Abdullah, R., Syahra, Y., Azhar, Z., Hutagalung, J., & Hasugian, B. S. (2021). Frequent pattern growth algorithm for maximizing display items. Telkomnika (Telecommunication Computing Electronics and Control), 19(2), 390–396.
Nurarofah, E., Herdiana, R., & Nuris, N. D. (2023). Penerapan Asosiasi Menggunakan Algoritma Fp-Growth Pada c Pola Transaksi Penjualan Di Toko Roti. Jurnal Mahasiswa Teknik Informatika, 7(1), 353–359.
Pratama, S. P. (2023). Analisa Data Mining Assosiasi Fp-Growth Pada Penjualan Produk Di Toko Ritel Agung. Jurnal TEKINKOM, 6(1), 63–71.
Putra, Y. S., Kurniawan, R., & Wijaya, Y. A. (2024). Penerapan Data Mining Menggunakan Algoritma Fp-Growth Pada Data Penjualan Sembako. Jurnal Mahasiswa Teknik Informatika, 8(1), 561–567.
Sera, E., Hazriani, Mirfan, & Yuyun. (2023). Analisis Sentimen Ulasan Produk di E-Commerce Bukalapak Menggunakan Natural Language Processing Sentiment Analysis of Product Reviews on E-Commerce’s Bukalapak Using Natural Language Processing. Jurnal SISFOTEK, 7(1), 237–243.
Yogasuwara, R., & Ferdiansyah, F. (2022). Implementasi Algoritma Frequent Growth (FP-Growth) Menentukan Asosiasi Antar Produk. Jurnal Sistem Komputer Dan Informatika (JSON), 4(1), 165–171.
Yulani, Y.-, Kurniawan, R., & Wijaya, Y. A. (2024). Implementasi Algoritma Fp-Growth Pada Data Transaksi Penjualan Seblak Jontor. JIKA (Jurnal Informatika), 8(1), 112.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.