Spatiotemporal Dynamics of Seismic Activity in the Toba Caldera based on DBSCAN Clustering Algorithms
Keywords:
Algoritma Pengelompokan DBSCAN, aktivitas seismik, Kaldera TobaAbstract
Salah satu sistem vulkanik terpenting di dunia, Kaldera Toba, memiliki lingkungan seismotektonik yang kompleks akibat interaksi antara tektonik regional, proses vulkanik, dan dinamika kaldera. Kinerja algoritma Density-Based Spatial Clustering of Applications with Noise (DBSCAN) menjadi fokus utama penelitian ini, yang menggunakan pendekatan pembelajaran mesin tanpa pengawasan untuk mengevaluasi aktivitas seismik di Toba Geopark antara tahun 2019 dan 2022. Sebagai fitur masukan, parameter gempa seperti magnitudo, percepatan tanah maksimum, kedalaman hiposentrum, dan posisi geografis digunakan. Indeks Davies-Bouldin, indeks Calinski-Harabasz, dan koefisien siluet digunakan untuk menilai kinerja pengelompokan. Berbeda dengan kinerja yang diamati di lokasi yang dipengaruhi tektonik, hasil menunjukkan bahwa DBSCAN sangat efektif di lingkungan vulkanik, mencapai skor siluet 0,679 dan indeks Davies-Bouldin 0,404. Sifat diskrit dan terkendali struktur dari seismisitas vulkanik tercermin dalam identifikasi DBSCAN terhadap enam kluster seismik kompak yang terkait dengan struktur kaldera unik dan klasifikasinya terhadap 91,48% peristiwa sebagai noise. Korelasi yang kuat antara kluster yang terdeteksi dan karakteristik vulkanik yang dikenal, seperti tepi kaldera, kompleks vulkanik pusat, dan sistem patahan yang berinteraksi, terungkap melalui analisis spasial. Hasil ini menunjukkan keefektifan algoritma klustering yang spesifik lingkungan dan membantu dalam pengembangan metode berbasis pembelajaran mesin untuk penilaian risiko dan pemantauan seismik.
Downloads
References
C. A. . Chesner, “Toba Caldera : the eye of Sumatra : evolution of the Toba Caldera Complex,” p. 99, 2025.
A. Tibaldi, “Volcano plumbing system geometry: The result of multi-parametric effects,” J. Volcanol. Geotherm. Res., vol. 298, pp. 85–135, Jun. 2015, doi: 10.1016/J.JVOLGEORES.2015.03.023.
J. Saxby, J. Gottsmann, K. Cashman, and E. Gutierrez, “Magma storage in a strike-slip caldera,” Nat. Commun. 2016 71, vol. 7, no. 1, pp. 12295-, Jul. 2016, doi: 10.1038/ncomms12295.
A. F. Bell et al., “Caldera resurgence during the 2018 eruption of Sierra Negra volcano, Galápagos Islands,” Nat. Commun., vol. 12, no. 1, Dec. 2021, doi: 10.1038/S41467-021-21596-4.
G. Weber, J. Biggs, and C. Annen, “Distinct patterns of volcano deformation for hot and cold magmatic systems,” Nat. Commun. , vol. 16, no. 1, Dec. 2025, doi: 10.1038/S41467-024-55443-Z.
T. Ryberg, U. Muksin, and K. Bauer, “Ambient seismic noise tomography reveals a hidden caldera and its relation to the Tarutung pull-apart basin at the Sumatran Fault Zone, Indonesia,” J. Volcanol. Geotherm. Res., vol. 321, pp. 73–84, Jul. 2016, doi: 10.1016/J.JVOLGEORES.2016.04.035.
M. Sinambela, E. Darnila, I. K. Jaya, I. M. Sarkis, and A. Rikki, “Cluster Analysis and Seismicity of The Samosir Using Machine Learning Approach,” 2023 8th Int. Conf. Informatics Comput. ICIC 2023, 2023, doi: 10.1109/ICIC60109.2023.10381924.
D. H. Natawidjaja, “Updating active fault maps and sliprates along the Sumatran Fault Zone, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 118, no. 1, 2018, doi: 10.1088/1755-1315/118/1/012001.
A. V. H. Simanjuntak et al., “Environmental vulnerability characteristics in an active swarm region,” Glob. J. Environ. Sci. Manag., vol. 9, no. 2, pp. 211–226, 2023, doi: 10.22034/gjesm.2023.02.3.
Y. Wang, Y. Gu, and J. Shun, “Theoretically-Efficient and Practical Parallel DBSCAN,” Proc. ACM SIGMOD Int. Conf. Manag. Data, pp. 2555–2571, Jun. 2020, doi: 10.1145/3318464.3380582/SUPPL_FILE/3318464.3380582.MP4.
Y. P. Wu, J. J. Guo, and X. J. Zhang, “A linear DBSCAN algorithm based on LSH,” Proc. Sixth Int. Conf. Mach. Learn. Cybern. ICMLC 2007, vol. 5, pp. 2608–2614, 2007, doi: 10.1109/ICMLC.2007.4370588.
D. Z. Chen, M. Smid, and B. Xu, “Geometric algorithms for density-based data clustering,” Int. J. Comput. Geom. Appl., vol. 15, no. 3, pp. 239–260, Jun. 2005, doi: 10.1142/S0218195905001683.
P. Viswanath and V. Suresh Babu, “Rough-DBSCAN: A fast hybrid density based clustering method for large data sets,” Pattern Recognit. Lett., vol. 30, no. 16, pp. 1477–1488, Dec. 2009, doi: 10.1016/J.PATREC.2009.08.008.
H. Song and J. G. Lee, “RP-DBSCAN: A superfast parallel DBSCAN algorithm based on random partitioning,” Proc. ACM SIGMOD Int. Conf. Manag. Data, pp. 1173–1187, May 2018, doi: 10.1145/3183713.3196887.
D. Deng, “DBSCAN Clustering Algorithm Based on Density,” Proc. - 2020 7th Int. Forum Electr. Eng. Autom. IFEEA 2020, pp. 949–953, Sep. 2020, doi: 10.1109/IFEEA51475.2020.00199.
M. Usama et al., “Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges,” IEEE Access, vol. 7, pp. 65579–65615, 2019, doi: 10.1109/ACCESS.2019.2916648.
Y. Roh, G. Heo, and S. E. Whang, “A Survey on Data Collection for Machine Learning: A Big Data-AI Integration Perspective,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 4, pp. 1328–1347, Apr. 2021, doi: 10.1109/TKDE.2019.2946162.
M. K. Gupta and P. Chandra, “A comprehensive survey of data mining,” Int. J. Inf. Technol., vol. 12, no. 4, pp. 1243–1257, Dec. 2020, doi: 10.1007/S41870-020-00427-7.
W. Jing, C. Zhao, and C. Jiang, “An improvement method of DBSCAN algorithm on cloud computing,” Procedia Comput. Sci., vol. 147, pp. 596–604, 2019, doi: 10.1016/J.PROCS.2019.01.208.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Marzuki Sinambela, Purwantiningsih, Febria Anita, Puji Hartoyo, Ari Mutanto

This work is licensed under a Creative Commons Attribution 4.0 International License.






